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Conductors Nontransposed
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Abstract—Conductor transposition, for cross-bonded cables, is
recommended in the ANSI/IEEE Standard 575-1988 as a means to
reduce interference with communication systems. In this paper, it
is shown that reduced interference comes at the price of increased
cable losses, which is an issue not addressed in the 1998 edition of
the IEEE Standard 575. Analytical formulas are obtained for the
calculation of the positive-sequence resistance for transposed and
not transposed conductors to shed light on the reasons why the
losses increase when the conductors are transposed. It has been
found that for cross-bonded cables installed in flat formations, the
positive-sequence resistance of transposed conductors is always
larger than that of nontransposed conductors. Parametric studies
are performed by varying all of the construction and installation
parameters that affect the value of the positive-sequence resis-
tance. In particular, we have changed the separation distance
between cables, the insulation thickness, the number and resis-
tance of the concentric wires, and the resistivity of the soil among
other parameters. Examples on transmission and distribution
cables are discussed.

Index Terms—Ampacity, cable parameters, cross-bonding,
losses, positive-sequence impedance, resistance.

NOMENCLATURE

Resistance of conductor of phase .

Resistance of conductor of phase .

Resistance of conductor of phase .

Average value of the three-phase conductor
resistances .

Geometric mean radius of the concentric wires (in
meters).

Average value of the resistance of the concentric
wires .

Distance between two consecutive conductors (in
meters).

Number of strands of the concentric wires.

.

.
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.

Insulation thickness .

Electrical resistivity of earth .

Frequency 60 Hz

.

.

658.87165.

.

Internal diameter of the (concentric wires) layer (in
meters).

External diameter of the (concentric wires) layer (in
meters).

Thickness of the layer
Diameter of concentric wires in meters .

Factor to obtain the GMR (see Table II.

GMR Geometrical mean radius.

I. INTRODUCTION

I N A previous study [1], it has been shown that transposing
the conductors of cross-bonded cables can increase the pos-

itive-sequence resistance by 20%. The study was purely numer-
ical and offered no insight on the reasons for this counterintu-
itive phenomenon to happen. This fact, however, is very impor-
tant because the losses of a power cable, operating under bal-
anced conditions, are caused according to Joule’s Law, by the
positive-sequence resistance and the positive-sequence current
computed as .
Conductor transposition, for cross-bonded cables, is advo-

cated in the ANSI/IEEE Standard 575-1988 [2] to prevent in-
terference with communication cables (see Appendix D3 of the
standard). However, no attention is paid to the fact that the losses
substantially increase by transposing the cables.
This paper presents a parametric study of the effects of con-

ductor transposition on the losses of a three-phase cable system
distributed in a flat formation.
The parametric study is carried out with the analytically de-

rived equations for the positive-sequence resistance of cables
with conductors transposed and with conductors nontransposed.
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Fig. 1. Cable installation in flat formation.

A comparison is made between the values of the positive-se-
quence resistance from these two equations. This is done by
varying only one parameter at a time for the given equation and
substituting constant values for the remaining parameters. The
variation of the positive-sequence resistance for both conduc-
tors transposed and nontransposed for that one particular pa-
rameter is then plotted over a wide range of values.
The parameters that are varied one at a time include the sepa-

ration distance between the cables, the insulation thickness, the
number of strands of the concentric wires, the resistance of the
conductors, and the resistivity of the soil. Then, the values of
the positive-sequence resistances are compared for each of these
parameters. It is found that the value of the positive-sequence
resistance remains larger for cables with transposed conductors
compared to the nontransposed conductors in all cases.

II. ANALYTICAL CALCULATION OF CABLE PARAMETERS

The calculation of the cable parameters is performed by fol-
lowing the method described in [3] (slightly improved to ac-
count for skin and proximity effects, which are not considered
in [3]).

A. Primitive Impedance Matrix

The elements of the primitive matrix are computed using
Carson’s equations as in [3], but the conductor resistances are
computed per IEC 60287-1-1 [4]. The geometrical mean radius
(GMR) is computed using the IEC Standard 60287-1-3 [5]. See
[1] for a numerical example. All of these techniques are com-
bined to produce the most accurate yet available calculation of
the impedance parameters of the cable (at a power frequency of
60/50 Hz).
The input data are the geometrical information of the cable

installation including the construction details of all cables in
the installation. Every metallic layer of each cable (conductor,
sheath, concentric wires, and armor) is explicitly represented.
Thus, for a three-phase concentric cable installation as shown
in Fig. 1, the primitive 6 6 impedance matrix is composed of
the following 3 3 submatrices:

(1)

where the super indices and represent conductors and con-
centric wires, respectively. The self impedances of the phase
conductors (the diagonal elements of the submatrix)
are computed from

(2)

Concentric wires are treated as in Kersting [3]. Then, the di-
agonal elements of the submatrix can be computed
with the modified equations from Carson by substituting the
product by the geometrical mean radius as follows:

(3)

where

and (4)

The offdiagonal elements of all submatrices can be computed
from

(5)

Then, a 6 6 primitive impedance matrix can be constructed
as

(6)
Note that and all if its submatrices are symmetric.

B. Cross-Bonding—Reduction to Phase Conductors

The primitive impedance matrix is reduced to phase conduc-
tors taking into consideration the bonding type. For the case of
cross-bonded concentric wires with equal minor section lengths
and phase conductors not transposed (NT), the first step is to per-
mute the matrix and take the corresponding averages yielding

(7)
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where the elements of matrix (7) are computed from the ele-
ments of matrix (6) as

Note that in (7), the submatrix is not different from
; submatrix has only two different num-

bers, one for the self and one for the mutual elements.
The submatrices and are symmetric and
have only three different values, one per row or column, respec-
tively.
For the case where the conductors are (counter-) transposed

(T), the impedance matrix after applying bonding (permutation
and averaging) becomes

(8)

where the elements of (8) are computed from the elements of
(6) as

One can note that now in addition to having with
only self and one for the mutual elements, submatrix
is reduced to self and mutual elements as well. Also note that
as visible in (8), submatrices and are sym-
metric. However, they have now six numerically different ele-
ments rather than only three as in the nontransposed case (7).

The submatrices corresponding to the concentric wires can
be eliminated using the Kron reduction (since the wires are
grounded on both sides). This reduction is done with

(9)

yielding a 3 3 phase matrix for the nontransposed and trans-
posed cases.

C. Symmetrical Components Transformation

The final step in computing the positive-sequence resistance
is to apply the symmetrical components transformation as fol-
lows:

(10)

where

In agreement with [3] for the transposed case, we find per-
fect decoupling between the sequences. Therefore, the sequence
impedance matrix becomes

(11)

For the nontransposed case, the decoupling is not perfect and
mutual couplings between sequences exist as follows:

(12)

In general, the offdiagonal elements of the nontransposed se-
quence impedance matrix are (much) smaller than the diagonal
elements, but they are not zero.
The positive-sequence resistance is then obtained from the

positive-sequence impedance ( and ) by separating
the real part as

(13)

The positive-sequence resistance for conductors nontrans-
posed can be obtained analytically by performing the matrix
operations in (12) and (13) yielding (14) at the bottom of the
next page.
The values of constants to can be found in the

Appendix. From (14), shown at the bottom of the next page,
we can see that the positive-sequence resistance for conductors
nontransposed is comprised of two terms. The first term repre-
sents the average value of the three-phase conductor resistances

. The second term is a fraction that depends
on the average value of the resistances of the concentric wires,
the distance between the two consecutive copper conductors,
and the GMR of the concentric wires.
The positive-sequence resistance for the case of transposed

conductors has an analytical formula extending several pages
and it cannot be presented in this paper. In the following section,
we present a parametric analysis comparing the parameters that
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Fig. 2. Cable construction details.

affect the value of the positive-sequence resistance for cases
when one geometrical value is varied at a time.
One can note that always

(15)

Therefore, the losses of the transposed cables are always
larger than the losses of the nontransposed cables.

III. PARAMETRIC STUDY

A parametric study is presented on the variation of the pos-
itive-sequence resistance of cables with conductors transposed
and nontransposed, varying one parameter at a time.
A typical 220-kV installation used in Red Eléctrica de España

(Spanish TSO) is considered for the analysis as in [1]. The three
cables are installed in a flat formation and are separated by a
distance of 0.425 m. The cable construction details is as
shown in Fig. 2.

A. Changing the Separation Distance Between Cables

Consider the parametric equation of the positive-sequence
resistance for conductors transposed and conductors nontrans-
posed. By substituting the numerical values of all the parameters
for the given cable except for the distance between the con-
secutive conductors, we derive the equation of the positive-se-
quence resistance in terms of the distance between the con-
ductors. The positive-sequence resistance for conductors trans-
posed becomes (16), shown at the bottom of the page.

The values of constants to can be found in the
Appendix. The positive-sequence resistance for conductors not
transposed is

(17)

where .
The distance between the two consecutive conductors is

varied from (almost touching) to 1 m. The positive-se-
quence resistance is plotted for conductors transposed and
conductors not transposed in Fig. 3. One can see that the
positive-sequence resistance for conductors not transposed
does not change; it remains constant at the average value .
However, the positive-sequence resistance for the transposed
case changes substantially as the distance varies. The minimum
value attained is , for 0 and . Therefore, for
all practical separation distances between cables, transposing
cables increases the losses.

B. Changing the Insulation Thickness

The geometric mean radius of the phase conductor and a neu-
tral strand depends on three factors, one of which is the
insulation thickness. Thus, changing the thickness of the insu-
lation changes which, in turn, varies the positive-sequence
resistance of the cable. The equations for the positive-sequence
resistance in terms of the insulation thickness for conductors
transposed are shown in (18) at the bottom of the next page and
for conductors not transposed is

(19)

where

(14)

(16)
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Fig. 3. Variation of the positive-sequence resistance for conductors transposed
and conductors not transposed with respect to distance between consecutive
conductors.

Fig. 4. Variation of positive-sequence resistance for conductors transposed and
conductors not transposed with respect to the insulation thickness.

for number of strands of concentric wires. The values
of the constants are given in the Appendix.
The variation in the positive-sequence resistance for the two

cross bonding alternatives of cables is plotted in Fig. 4 when
varying the insulation thickness from 1 to 100 mm. As in the
previous case, one can see that for conductors not transposed,
the positive resistance remains constant at the average value ,
while the positive-sequence resistance for the transposed case
changes substantially as the insulation thickness varies and it is
always larger than . Therefore, transposing cables increases the
losses regardless of the cable insulation thickness.

On increasing the insulation thickness above 100 mm, the
variation in the positive-sequence resistance for conductors
transposed is similar to the variation of the positive-sequence
resistance for conductors transposed when the separation dis-
tance between the cables is changed as seen in Fig. 4. Results
are not shown since thicker insulation is not practical.

C. Varying the Number of Strands in the Concentric Wires

In addition to the insulation thickness, the geometric mean
radius of the phase conductor and a neutral strand also de-
pends on the number of strands in the concentric wires. The
equations for the positive-sequence resistance in terms of the
number of strands of the concentric wires for conductors trans-
posed are shown in (20), at the bottom of the page, and conduc-
tors not transposed are shown as

(21)

where .
The positive-sequence resistance for the two cables is plotted

in Fig. 5 when the number of strands is varied from 5 to 200. It
can be seen, once again, that the positive-sequence resistance of
cables with nontransposed conductors remains unchanged at the
average resistance . As the number of strands in the concen-
tric wires increases, the positive-sequence resistance of trans-
posed cables increases. For cables with more than a few concen-
tric wires, the positive-sequence resistance remains virtually un-
changed as the number of wires increases, but at a higher value
than for the case when the conductors are not transposed.

D. Equating the Resistance of Conductors

From the previous results, we suspected that the differences
could come from the fact that the resistances of the conduc-
tors of different phases are slightly different. This is so because
the attained temperature is different (the center cable is always
slightly hotter). In this subsection we assume that the resistance
of all the three conductors is the same .
Under those conditions, we are able to express the positive-se-
quence resistances in terms of the resistances of the conductors
as follows:

(22)

(23)

(18)

(20)
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Fig. 5. Variation of positive-sequence resistance for conductors transposed and
conductors not transposed with respect to the number of strands in the concentric
wires.

Fig. 6. Variation of positive-sequence resistance for conductors transposed
and conductors not transposed with respect to the resistance of the copper
conductors.

where of the copper conductors at a fixed tem-
perature; ; ;

.
From (23), it can be easily seen that the positive-sequence re-

sistance for the conductors not transposed is larger than the con-
ductor resistance by . From (22), it can
be seen that the positive-sequence resistance of the cables with
conductors transposed is larger than the conductor resistance by
approximately . Therefore, it is possible
to conclude that positive-sequence resistance of the cables with
transposed conductors is always greater than the positive-se-
quence resistance of the cables with conductors not transposed.
The variation in the positive-sequence resistance for the con-

ductors transposed and conductors not transposed with respect
to the change in the conductor resistance is plotted in Fig. 6. As
expected from (22) and (23), the difference is only a constant,
but the positive-sequence resistance for cables with transposed

Fig. 7. Variation of positive-sequence resistance for conductors transposed and
conductors not transposed with respect to the resistivity of the soil.

conductors is always larger than that of cables with nontrans-
posed conductors.

E. Changing the Resistivity of the Soil

From (3), we can see that the constant in the positive-
sequence resistance equation for conductors not transposed is
composed of three factors which are the constant , the fre-
quency, and the resistivity of the soil. Thus, varying the resis-
tivity of the soil will affect the positive-sequence resistance.
The equation of the positive-sequence resistance for conduc-

tors transposed and conductors not transposed is converted in
terms of the resistivity of the soil. The positive-sequence resis-
tance for conductors transposed is given in (24), at the bottom
of the page, and for conductors not transposed are shown as
follows:

(25)

where .
By varying the resistivity over a wide range, the positive-

sequence resistance for both alternatives is plotted as in Fig. 7.

F. Operating the Three Cables at the Same Temperature

The operating temperature of the three cables is approxi-
mately the same. In this subsection, it is considered that the
temperature of conductors and wires is the same. Therefore, the
6 6 primitive matrix simplifies to

(26)

(24)
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Fig. 8. Construction details of the 25-kV TRXLPE URD cable.

Fig. 9. Construction details of the 35-kV TRXLPE URD cable.

Note that there are only four distinctive values for the ele-
ments of matrix (26) that are calculated as follows:

(27)

Although the equations are simpler, it is not possible to obtain
a sufficiently simple equation to see what parameter is respon-
sible for the increase in the positive-sequence resistance.

IV. EXAMPLES OF CABLES

The parametric equations for cables with transposed conduc-
tors and with nontransposed conductors (14) are derived for a
typical 220-kV installation used in [1]. To check the validity of
these equations with distribution cables, a 25-kV and a 35-kV
TRXLPE URD cable are considered.
The construction of the 25-kV TRXLPE URD cable is as

shown in Fig. 8. and that of the 35-kV TRXLPE URD cable
is as shown in Fig. 9. For both examples, the three cables are
considered in a flat formation, separated by a distance of 0.1 m.

Fig. 10. Cable 1: Construction details for a 230-kV XLPE, copper conductor,
welded copper corrugated sheath cable.

Fig. 11. Cable 2: Construction details of 230-kV XLPE, aluminum conductor,
aluminum–corrugated sheath cable.

Fig. 12. Cable 3: Construction details of 15 kV, copper conductor TRXLPE
insulation, and longitudinal copper tape shielded cable.

With the 25-kV cable, the positive-sequence resistance for
the transposed conductor is 0.5804 km whereas for the non-
transposed conductor, it is 0.5786 km. For the 35-kV cable,
the positive-sequence resistance calculated is 0.4664 km
and 0.4644 km for cables with conductors transposed and
conductors nontransposed, respectively. Thus, the positive-se-
quence resistance in both cables is higher for the transposed
conductor than for the nontransposed conductors.
Three additional cables with different constructions are used

to show the behavior of the positive-sequence resistance when
the resistance of the shielding systems (sheath or concentric
wires) in the cables varies. Cable 1 has a corrugated copper
sheath (Fig. 10), cable 2 has a corrugated aluminum sheath
(Fig. 11), and cable 3 has a moisture barrier design, including
a longitudinally folded copper tape (Fig. 12). Each cable is
laid in a flat formation arrangement as shown in Fig. 1. The
positive-sequence resistance for conductors transposed and
nontransposed for the three cables is given in Table I.
For cable 1 and cable 2, with different sheath resistances,

the positive-sequence resistance when the conductors are trans-
posed is found to be greater, by about 2.5%, than the positive-se-
quence resistance when the conductors are nontransposed. For
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TABLE I
POSITIVE-SEQUENCE RESISTANCE FOR CABLES WITH CONDUCTORS
TRANSPOSED AND FOR CABLES WITH CONDUCTORS NONTRANSPOSED

TABLE II
VALUES OF FOR CONDUCTORS [5]

cable 3, as the copper tape sheath is very thin, the positive-se-
quence resistance changes very little when the conductors are
transposed.
IEEE Standard 575 is currently under revision by the Insu-

lated Conductors Committee (ICC); Draft 12 was made avail-
able to us. The conclusions of the sections related to our work
remain similar to the current (1988) standard. In fact, Draft 12
has an expanded explanation of cross-bonded cables with con-
ductor transposition. Our findings are not reflected. We will be
working with the Working Group C2W Guide for High Voltage
Cable Sheath Bonding (P575).

V. CONCLUSIONS

In this paper, we have found that conductor transposition for
cross-bonded cables has technical disadvantages with respect to
the case where the conductors are not transposed. Much larger
losses can be produced when the conductors are transposed.
Analytical formulas have been obtained for the calculation of
the positive-sequence resistance. Through parametric analysis,
it has been demonstrated that the positive-sequence resistance
of cables with transposed conductors is always larger than that
of cables with nontransposed conductors. We have varied the
separation distance between cables, the insulation thickness, the
number of concentric wires, the resistance of the conductors,
and the resistivity of the soil. Examples of transmission and dis-
tribution cables have been discussed, including different con-
structions for sheath and screens. In all cases, except for sheaths
with longitudinal copper tapes where losses remain the same,
conductor transposition produces larger losses.
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